	Oakwood Park Grammar School MATHEMATICS DEPARTMENT A LEVEL QUANTITIES IN MECHANICS	Name					
STRIME	A LEVEL QUANTITIES IN MECHANICS ASSIGNMENT	Target grade					
Answer these questions on the sheet. You must keep this assignment in your maths ring binder. CALCULATORS ARE ALLOWED but ALL workings should be shown to gain full credit.							
1 . A person runs across a field from point A to point B with a speed of 5.3 m s ⁻¹ and then runs back from maint B to point A mith a speed of 5.3 m s ⁻¹ and then runs back from							
Figure 1							
	positive direction						
	A 30 m B						
a	Taking the positive direction as shown in the diagram, state the povelocity when travelling from A to B,.	erson's					
b	velocity when travelling from <i>B</i> to <i>A</i> .	(1)					
		(1)					
Anoth C	er person runs 30 m from A in the exact opposite direction of B to a State this person's displacement from A at the point C.	a point <i>C</i> .					
C	Suite this person s' displacement nomini at the point C.	(1)					
		(Total 3 marks)					
2. The height of a tennis ball above the ground can be modelled using the equation $h = 1.7 + 0.18x - 0.01x^2$, where <i>h</i> metres is the height of a tennis ball above the ground and <i>x</i> metres is the horizontal distance							
a i	Find the height of the tennis ball when it is struck.						
		(2)					
ii	at a horizontal distance of 7 m.	(2)					
(2) To be called 'in' the tennis ball must hit the ground before it travels a horizontal distance of 25 m. Will the tennis ball be called 'in'?							
0							
C	The tennis ball is hit with an initial speed of 2 km min^{-1} Convert	(5) this into $m s^{-1}$					
L	The tennis ball is int with an initial speed of 2 km initial. Collvert						
		(3)					
		(Total 3 marks)					

where <i>h</i> metres is the vertical height of the pole vaulter and <i>x</i> metres is the horizontal distance travelled after his feet leave the ground.				
a Find the horizontal distance travelled when the pole vaulter lands.				
(3)				
b Given that the pole vaulter is at his greatest height halfway between leaving the ground and landing, find the greatest height of the pole vaulter.				
(3)				
For a jump to be successful, the pole vaulter must clear a bar of height 4.9 m.c Calculate the range of horizontal distances from the bar that the pole vaulter can leave the ground				
and have a successful jump.				
d State the effect in this model of (7)				
i modelling the pole vaulter as a particle,				
ii making air ressistance negligible. (1)				
(1)				
(Total 15 marks)				

4 . A boat travels from A to B and then from B to C. The displacement from A to B is $(-28i + 80j)$ m. The displacement from B to C is $(130i + 15i)$ m.							
a Find	I the total distance the bo	at travelled in n	noving fro	om A to C .			
a Find the total distance the boat travelled in moving from A to C. b Find the angle the vector \overrightarrow{AC} makes with the unit vector i . (4)							
				(4) (Total 8 marks)			
5. An ice ho	ockey puck is hit and init	ially travels wit	h a veloci	ty of $(14\mathbf{i} + 22\mathbf{j}) \mathrm{m s^{-1}}$			
a Finc	I the speed of the puck.						
b Find	I the angle of direction of	f motion the puc	ck makes v	(3) with the unit vector j .			
		·		J			
c State the effect of modelling the ice as a smooth surface. (4)							
d A hockey puck has a density of $1.4 \mathrm{gcm^{-3}}$ Convert this into kg m ⁻³ (1)							
(4)							
SCOPE ()	DEDCENTACE	СРАД	F	(Total 10 marks)			
	TERCENTAGE	GRAD		Teacher comment including EDI			
What went well			٢				
Modelling in mechanics							
Understanding speed vs velocity				Student corrections completed?			
Working with SI units							
Understanding vectors, magnitude and direction Vnowing distance is magnitude of displacement							
Knowing distance is magnitude of displacement							
Knowing speed is magnitude of velocity							
1			1	l			